Eur. Phys. J. B 48, 385-391 (2005)
DOI: 10.1140/epjb/e2005-00414-x

THE EUROPEAN
PHYSICAL JOURNAL B

Particle densities for dilute hard-sphere Bose or Fermi gases

in an external potential

X.-Z. Wang?

Institute for Theoretical Physics, Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, P.R. China

Received 22 July 2005 / Received in final form 16 October 2005
Published online 23 December 2005 — (© EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2005

Abstract. We prove that if the diameter of a hard-sphere is much smaller than the size of an external
potential, the s-wave pseudopotential reduces to the Huang-Yang s-wave pseudopotential. We obtain the
first-order virial expansions of particle densities for dilute hard-sphere Bose or Fermi gases in an arbitrary
external potential. In the absence of an external potential, the results reduce to the Huang-Yang-Luttinger
and Lee-Yang virial expansions. In the quasi-classical limit, the results reduce to the results of the local

density approximation.

PACS. 05.30.-d Quantum statistical mechanics — 05.30.Jp Boson systems — 05.30.Fk Fermion systems and
electron gas — 31.15.Bs Statistical model calculations (including Thomas-Fermi and Thomas-Fermi-Dirac

models)

1 Introduction

In 1995, Bose-Einstein condensation was observed in the
experiments on dilute vapors of rubidium and sodium in
which the Bose atoms were confined in magnetic traps
and cooled down to extremely low temperatures [1]. These
spectacular experimental achievements have stimulated
further experimental and theoretical studies [2]. In 1999,
the evaporative cooling of dilute Fermi gases was achieved
by using the magnetic confinement techniques [3].

The noninteracting quantum gases is a zeroth-order
approximation to the real quantum gases. The noninter-
acting Bose and Fermi gases in d-dimensional harmonic
traps are exactly solvable since the single-particle den-
sity matrix is available [4,5]. The exact particle and en-
ergy densities for the harmonically trapped noninteracting
Bose gas in any dimensions have been obtained [6]. The
exact particle and energy densities of the harmonically
trapped noninteracting Fermi gas in any dimensions have
been obtained [6-9]. The density profile for a harmonically
trapped noninteracting Fermi gas in any dimensions has
been obtained as an asymptotic series in inverse powers of
particle number [10,11].

In the 1950s Huang and Yang [12-14] developed a
pseudopotential method for a dilute quantum gas in the
absence of an external potential. The basic idea is that
at low temperatures, only the ground state and the low-
lying energy levels of the system are involved. Hence a
complete knowledge of N-particle Schrodinger equation is

® e-mail: xzwang@sjtu.edu.cn

not necessary. At low temperatures, the energies of par-
ticles are low. At low energies, usually only the s-wave
scattering is important and the s-wave scattering is com-
pletely determined by the scattering length a. The eigen-
values and eigenfunctions of the system can be expanded
as a power series in a. Hence the actual, complicated
N-particle Hamiltonian may be replaced by a much sim-
pler pseudopotential Hamiltonian, which reproduces the
ground state and the low-lying energy levels of the sys-
tem. The thermodynamic quantities may be expanded as
a power series in a/A. Since the current experiments are
performed in traps, in this paper, we will apply the pseu-
dopotential method to a dilute quantum hard-sphere gas
in an external potential.

This paper is organized as follows. In Section 2, the
single-particle Bloch matrix density is given. In Section 3,
the validity of the Huang-Yang s-wave pseudopotential is
discussed for any external potential. In Section 4, the first-
order particle density for a Bose or Fermi gas with spin
J in an external potential is obtained. In Section 5, we
discuss possible experimental detection. In Section 6, a
summary of this paper is given.

2 Single particle bloch density matrix

The single-particle Schrodinger equation reads

[_ s (88—;2 + & + 6—22) + V(F)] Pi(7) = e (1),
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where V(7) is the external potential, €; are energy eigen-
values and ;(7) is a complete set of normalized orthonor-
mal eigenfunctions. The single-particle Bloch density ma-
trix is defined by

=il
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with
C(F,r"; 8) =
for V() =0, and

C (7,775 B i, wa, w3) =
C(x,2'; B;w1)C(y, y'; B;w2)C (2, 2'; Biws), (4)

for a harmonic potential V(¥) = (m/2)(w?z? + w3y? +
w?22). Here = 1/kpT, A\ = h(2rmkpT)~/? is the ther-
mal wavelength and C'(z, z"; §; w) is the Bloch density ma-
trix of a one-dimensional harmonic oscillator [4,5],

/ mw 1
Clx,z"; fyw) = [m]
xexp{ — % |2+ )2 tanh(5hw/2)

+(z— ') coth(ﬂhw/Q)} } (5)

In the quasi-classical limit, as shown by Landau and Lif-
shitz [15], C(7,7; 8) may be expanded as a power series in
h. Using equation (33.13) in [15], we obtain

C(r, 7 8) =

252 352
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3 Huang-Yang s-wave pseudopotential

Recently, the s-wave pseudopotential of two quantum
particles in isotropic harmonic potential has been deter-
mined [16,17]. It was found that for a/v/2an, < 1, the s-
wave pseudopotential reduces to the Huang-Yang s-wave
pseudopotential. Here a is the diameter of a hard-sphere
and ap, = (h/mw)'/2.

Define the size L of an external potential V' (#) such
that h?/mL? ~ V(|F] = L). Let us show that for a/L <
1, the s-wave pseudopotential of a dilute quantum hard-
sphere gas in an external potential reduces to the Huang-
Yang s-wave pseudopotential.

Consider the Schrodinger equation of two particles in
an external potential V (7)

h? . . oL
5 (T2 98) V) + V)| v -

EW(Fl,’FQ), |771 — F2| > a, (7)
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with the boundary condition ¥(|fy — 72| = a) = 0. In-
troducing center-of-mass coordinates R = (7 + 72)/2 and
relative coordinates ¥ = i} — 7, equation (7) becomes

V(R+F/2 +V( —7/2) ( )

= EV(R,7), r>a. (8)
We may extend equation (8) to the regime r < a. To the
order a, we may make an approximation V(R + 7/2) +
V(R —7/2) = 2V (R) + O(r?). To this degree approxima-
tion, the center-of-mass motion decouples from the rela-
tive motion. The relative motion is

2
(—h—v ) Q(F) = E.QF), r<a. 9)
The s-wave (I = 0) solution is
o [sin(kr) cos(kr)] [O(rQ2)
Q(r) = [T - tan(k:a)T 5 lrsol, 7 <a.
(10)
where k = (mE,)'/?/h. So we obtain
h? .
(-v2) o) -
. 4mh? tan(ka) _ _, O(rQ)
— < .
E.Q(F) - ’ 5(7) 5, 0 "<a (11)

Since E, ~ h?/mL? we find ka ~ a/L < 1. So equa-
tion (11) becomes

(-E92) a0 - B0 -
(12

Therefore equations (7) and (12) can be written in one
single equation valid for all values of 7 and 75 [18],

4rah?® _,_, O(rQd)

o) or

, r<a.

{ s (V) + V) + V()

Awah? 0 Lo Lo
+ a 5(7‘1 — )8—7“12] LI’(7“1,7"2) = EW(TlaTQ)- (13)
712

To the order a, equation (13) is exact. Equation (13) con-
tains the desired pseudopotential

H =
., 4rah? 0
> |-gm V@ Y s,
¢_1{ 2m 1<i<j<N Orij
— Ho+ H' (14)

where r;; = |75 — 7).
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4 Bose or Fermi gas with spin J

The second quantization of H' is

I 2rah?
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where a;ra, a;o are creation and annihilation operators of
bosons or fermions for the single-particle state ¥;xq, re-

spectively. Here x, is the spin wave function and a =

—J,—J +1,---,J. The unperturbed wave function of N
bosons or fermions are
|q§n> =
|nl()é>) Z:1,27; a:_J’_J_i_l’,J,
(16)

where n;, represents the occupation number on the single-
particle quantum state 1;x,. We have, for bosons

Gial  Nia ) = g Mia — 1), (17)
azal---ma--?:~/ma+1|---ma+1--->, (18)
and for fermions
ey = { CDSVG] g = 1) i = 1
Qi Nja ) {07 Njo = 0
(19)
alTa|...nw...>:
(71)Sm|...nm+1...>7nm:() (20)
0) nwzl
where
1—1 a—1
S = Z ne + Ni—1,0 + Nia—1- (21)

=1

0
Using equations (17)—(20), we obtain the first-order energy

[19], for Bose gas

2rah?
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387

and for Fermi gas,

(| H'|8,) = 2rah?

Z 2nianjy (1 — day)
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The canonical partition function may be expanded as a
power series in a,

Qv =QV +Q\ + (24)

with
S\}) — 76T7"(€_ﬁHOHI) 62 —BE(O) @ |HI|@n>

(25)
Substituting equations (22) and (23) into (25), we obtain,
for Bose gas

2mah?
5\}) — _ Tr?n ﬁ Z e—ﬁZm nig€l
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X (14 6ay) + 5ij5av(nfa

and for Fermi gas,

2
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The grand partition function may also be expanded as a
power series in a,

IR 3
N=0 n=0 LN=0 n=0

SO
=0

EORE

where z = exp(u/kpT) is fugacity and p is chemical po-
tential, and
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EDN Y
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Substituting equations (26) and (27) into (31), we obtain,

for Bose gas,

=(1)
=0

5 )
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)] [ s Pl P
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=_ (2J+1)(2J+2)/d3r/13(77)2, (32)
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and for Fermi gas,
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where () denotes ensemble average, for Bose gas

(o) = Dm0 Maze™ P e P
la) = Z;’:a:o[ze—ﬁﬁz]ma T 1 — ze B’
Nia) = \Nia Nia)
(nfa) = (nia) +2(nia)”
and for Fermi gas
< > anzo,l nl@[zeiﬁq]nm 26_661
n = =
e D=0, [ze7Be]ma 14 ze= B’
Ap and Ap are defined by
—Bei
ze
F) Z |wl — e~ Bei

ﬁi

[Jorenta -
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Z )" CO(F, 7 nB).
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where the power series converge for z < e’ with ¢y =
min(e,). For z > e’ Ap(7) has been obtained by a
inverse Laplace transform in [9]. Using Theorem 2 and
Lemma 2 in [9], we obtain

Ap(7) = i {(—1)%;1 [M}

where

(s )_L/chioo

211 i0o

e**h(s)ds, = >0,c>0. (40)

Using Theorem 5 in [9], we obtain for a isotropic harmonic
potential,

Ap(F) = 7 %%a; S exp(—r?/a3,) Y (~1)"
n=0

x> (=1)'L;(2r*/ai,)
=0
I'(3/2+k)
— kI(3/2)

X O(p/hw — j —2k —3/2)
— (1 — O)e—nﬁﬁw(—u/hw+j+2k+3/2)

O(—p/hw + j + 2k +3/2)
+G -+ (@)

[ —nBhw(p/hw—7j—2k—3/2)

where an, = (h/mw)'/?, L,(z) = (*/n!)d*(e~*z™)/dz™
are the Laguerre polynomials, ©(z) = 1 for > 0 and
O(z) =0 for z < 0.

Substituting equations (29), (30), (32), (33) into the
thermodynamic relation

N = /d?’rp =z— 1nu, (42)
we obtain number density
pB(7) =
(2J +1)|Ag(F) — (1 +J) 4”?:262%/13(?)2 +0 (a?),

(43)
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2
pr(7) = (2J+1) {AF(F) - J47mh BZQAF(F)Q} +0 (a?).
m 0z
(44)
Equations (43) and (44) may be expanded as
2
pp(P) = (27 +1) ZZ"C (7, 7, 5)] [1(1“)8”% b
n=1
x Y O F1B8)| + 0 (a®),  (45)
=1
= 8rah?
—» n+1 n = = o
pr(T) = (2J+1) ; C(r,7inB)| [1-J -
x Y (=D)HCFE F1B) | + O (a®) . (46)
=1

Substituting equations (3) into (45) and (46), we obtain
the famous Huang-Yang-Luttinger [14] and Lee-Yang [21]
virial expansions in the absence of an external potential,

pa(P) = 2T+ DA g5(2) [L = 4(1+ 1) S5 (2)] +0 (o)

(47)

N

pr(7) = (27 + 1A 3gs (—2) [71 - 4]%9%(72)} +0 (a2) .
(48)

Substituting equations (6) into (45) and (46), we obtain
the virial expansions in the quasi-classical limit,

pp(F) = (2] + 1))\—3g% (Ze—ﬁV(?‘)) {1 —

%9—% (2 VD) [V + 0 (a?),
(49)

401+ J)%

pr(T) = (2J + 1))\_3g% (726—[5!‘/(?)) [71 - 4]%9%

" (%e—ﬁwm)hw (—ze )2V ()

24mA3
2J + 1)33h? BV .,
— (%T)X‘gfg (—ze AV( )) V(AP +0 (a®),

(50)

g_

1
2

where g, (z) = Y0, 2"n 7. The first terms are the local-
density approximation [20]. The second and third terms
are the corrections.
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5 Possible experimental detection

For a dilute ultracold Fermi gas, the correction caused by
the weak interactions between atoms is small. In order to
seek possible experimental detection, let us consider the
dilute Fermi gas at absolute zero in an isotropic harmonic
trap. From equations (41) and (44) we obtain, for T'= 0 K,

P () = (27 + 1) Ap(7) {1— yBmah? aiAF( )] +0 (a%),
(51)
with
Ap(F) = 7r_3/2a Sexp(—r?/ap,) Z 1)/ L;(2r?/a3,)
7=0
I'(3/2+k) .
=0W x [O(p/hw — j — 2k — 3/2)
O(u/hw—j—1-2k—-3/2)]. (52)
From equation (38) we obtain, for T'=0 K,
(1) = 3 [P, (53)
and
/d3r/1p ZlenJrl)(nJrQ)/Q
€< n=0
=(M+1)(M+2)(M+3)/6, (54)
where M = Int(u/hw — 3/2).
From equation (52) we obtain
L m2) r(3/2+ k)
Ap(0) =72, kzzo HTG)2) (55)

From equations (52), (54) and (55), we obtain, for pu/hw ~
M > 6 or equivalently for N > (2J + 1)48,

[ e = (u/me)’ s, (56)

and
Ap(0) = 50 (u/200)"% (57)

and
Ap(r/an, = \/2p/hw) ~ a; 3 exp(—2pu/hw) ~ 0. (58)

From equations (56)—(58), we see that the local density
approximation is valid [10],

Ap@) = 22 (I (= mate2) (o)
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Substituting equations (59) into (51), we obtain, for N >
(2J+1)48 and T = 0 K,

pr(T) = Ma;ﬁ(i)Sm (1 — mw2r2/2u) i

3m2 hw
4W2J2J+1) a [ p\'? 2.2 76, \1/2
X [1 - a;w<hw (1 — mwr”/2p) .

(60)

Similarly, for an anisotropic harmonic potential, we ob-
tain, for N > (2J +1)48 and T'= 0 K,

e (2 et )
(61)
e = 2 ;ﬁi)ﬁagf(hfho)w

m 3/2
X [1 — ﬂ (wsz + wiy? + wng):|

T
373 ho hwho

Gho

2
X [1 - 22 (wsz +wiy? + wg,ZQ)} , (62)
L

2 1
N:J—+( H

3
—J(2J +1)?
6 hwho) (27 +1)

512\/§< [ >5/2 a
hwho ’

31572 Qho

X (63)

1/3 1/2

where wp, = (w1waws)'/? and ap, = (A/mwp,)

From equation (62) we see that the expansion param-
eter is (p/hwno)'/?a/an, ~ N'/%a/ay,. For the current
experiments, we have a ~ 10-100 A, wp, ~ 10-100 Hz,
m ~ 10726 kg and ap, ~ 10° A, a/apn, ~ 1073-10~%. For
a/apo = 0.003 and J = 1/2, the density distributions of a
dilute Fermi gas at absolute zero in an isotropic harmonic
potential are shown in Figure 1 for N = 10%,107,10%, 107,
respectively. We see that for N < 109, the correction is
negligible. For 106 < N < 10'2, the correction is small
but it is experimentally detectable. For N > 10'2, the
perturbation expansion fails.

6 Conclusion

We have proved that if the diameter of a hard-sphere
is much smaller than the size of an external potential,
the s-wave pseudopotential reduces to the Huang-Yang
s-wave pseudopotential. We obtain first-order virial ex-
pansions of particle densities for dilute hard-sphere Bose
or Fermi gases in an arbitrary external potential, which
are expressed in terms of the single-particle Bloch density
matrix. Since the Bloch density matrix of a harmonic os-
cillator is known, we obtain explicit results for the gases in
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5001 =~
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0.2 0.4 0.6 0.8 1

Density N=one thousand million

5000~ T~

4000 N

3000 N
2000

1000 N

0.2 0.4 0.6 0.8 1

Fig. 1. Density p as functions of r for N = 10°,107,10%,10°.
Here a/an, = 0.003. The unit of p is a;f. The units of
r are 17.132ap0,25.2542ah,, 37.3124an,, 55.3355ar, for N =
106,107,108, 10°, respectively. The dashing lines represent the
noninteracting cases.

a harmonic potential. In the absence of an external poten-
tial, the results reduce to the Huang-Yang-Luttinger and
Lee-Yang virial expansions. In the quasi-classical limit, the
results reduce to the results of the local density approxi-
mation.
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